A. For the thermal decomposition of acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CO}$, the following data at 800 K are given:

Exp't $^{\prime}$	$\left[\mathrm{CH}_{3} \mathrm{CHO}\right](\mathrm{M})$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.10	9.0×10^{-7}
2	0.20	36.0×10^{-7}
3	0.30	81.0×10^{-7}
4	0.40	14.4×10^{-6}

1. Write the rate equation for the reaction. What is the order of the reaction?
2. Calculate the rate constant for the reaction at 800 K .
3. Calculate the decomposition rate at 800 K at the instant when $\left[\mathrm{CH}_{3} \mathrm{CHO}\right]=0.250 \mathrm{M}$.
B. For the reaction $W+X+Y \rightarrow Z$ the following data were obtained at a constant temperature:

				1. What is the order with respect to each reactant?	
Expt	$[\mathrm{W}]$	$[\mathrm{X}]$	$[\mathrm{Y}]$	Rate $(\mathrm{M} / \mathrm{s})$	2. Write the rate law.
1	0.05	0.05	0.01	6.25×10^{-3}	3. Calculate average rate constant.
2	0.10	0.05	0.01	1.25×10^{-2}	

C. In a 45.5 second period during a reaction, the concentration of product W changes by $8.63 \times 10^{-2} \mathrm{M}$. Calculate the average rate of reaction.
D. A certain first order reaction is 35.5% complete in 4.90 min at $25^{\circ} \mathrm{C}$. What is its rate constant?
E. The rate constant for $2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$ is $0.54 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $300^{\circ} \mathrm{C}$. How long in seconds would it take for the concentration of NO_{2} to decrease from 0.62 M to 0.28 M ?
F. The half-life of the first order reaction $4 \mathrm{PH}_{3} \rightarrow \mathrm{P}_{4}+6 \mathrm{H}_{2}$ is 35.0 sec at $680^{\circ} \mathrm{C}$. Calculate (a) the rate constant for the reaction and (b) the time required for 95% of P_{4} to decompose.
G. Benzoyl peroxide, the substance most widely used against acne, has a half life of 9.8×10^{3} days when refrigerated. How long will it take to lose 5\% of its potency (95% remaining)?
H. In a catalytic experiment involving Haber process, synthesis of ammonia from nitrogen and oxygen gas, the rate of the reaction was measured as Rate $=\Delta\left[\mathrm{NH}_{3}\right] / \Delta t=2.0 \times 10^{-4} \mathrm{M} / \mathrm{s}$. Find the numerical value for the rate of reaction in terms of the rate of disappearance of (1) H_{2} gas (2) N_{2} gas.
I. Draw and label the energy diagram. A) E_{A} for combustion of glucose $\left.\left(C_{6} H_{12} \mathrm{O}_{6}\right) B\right) E_{A}$ for photosynthesis of $\left.\mathrm{CO}_{2}, C\right)$ Actual Products and Reactants. Given that the two processes are reverse of each other and combustion is always exothermic.
J. Butadiene reacts to form its dimer according to the reaction: $2 \mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{12}$ (g). The following data were collected for this reaction at a given temperature:

$\left[\mathrm{C}_{4} \mathrm{H}_{6}\right](\mathrm{M})$	Time (s)
0.01000	0
0.00625	1000
0.00476	1800
0.00370	2800
0.00313	3600
0.00270	4400
0.00241	5200
0.00208	6200

What is the order of the reaction?
What is the value of the rate constant?

